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Abstract

Over 90% of global water use occurs in agricultural production, which is subject
to two pervasive distortions: (i) incomplete property rights for farmers accessing
water and (ii) subsidies, taxes, and tariffs affecting agricultural output. This
paper combines a rich collection of global geospatial data with a dynamic spatial
equilibrium model to quantify the impact of agricultural and trade policies on
regional water scarcity and welfare. In the data, we show that water-intensive
crops concentrate highly in water-abundant locations, implying a strong role
for comparative advantage in governing global water use, though a small num-
ber of regions with very water-intensive production are losing water rapidly
over time. In the model, we capture production, consumption, and trade in
agriculture across many countries and crops, as well as the dynamic evolution
of local water stocks as farmers extract from the common pool resource. We
calibrate the model to match observed global patterns of agricultural produc-
tion and hydrologic trends and use it to conduct counterfactual simulations of
alternative policy regimes. We find that eliminating international trade in agri-
culture would dramatically increase water depletion across most of the world,
and especially so in drier food-importing regions, resulting in large reductions
in welfare over time. In contrast, other observed and hypothetical agricultural
policy liberalizations have mixed effects on depletion that vary greatly across
locations, suggesting nuance in implications for policy.
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1 Introduction

Over 90% of global water use by humans occurs in agricultural production, which
is critically dependent on rainfall and local stocks of groundwater and surface water
(Mekonnen and Hoekstra, 2011). While water itself is generally prohibitively costly
to transport over long distances, nearly 25% of all water consumption is embedded in
internationally traded agricultural products. Across the world, both input markets
for water and output markets for agriculture are subject to pervasive distortions.
Most farmers extract water as an open access resource without defined property
rights (Libecap, 2008), and agricultural markets typically exist amidst a broad array
of subsidies, taxes, tariffs, and trade restrictions (Anderson, Rausser and Swinnen,
2013). When input market failures prevent the cost of water from reflecting its
scarcity, trade liberalization can exacerbate the impact of this distortion and have
adverse long-run effects on resource depletion and welfare (Chichilnisky, 1994).

A few prominent examples suggest that global trade in agriculture could be con-
tributing to severe regional water depletion. In California’s Central Valley, ground-
water stocks have declined precipitously in recent decades in places that specialize
in producing and exporting highly water-intensive agricultural goods. For instance,
California produces approximately 80% of global almonds, which are the world’s
second most water-intensive crop per acre of production. Similarly, India’s north-
ern agricultural regions have been losing water faster than almost any other arable
land on earth (Rodell et al., 2018) while cultivating water-intensive crops like rice, of
which India is the world’s leading exporter. Sekhri (2022) shows that in this context,
policies encouraging trade led directly to substantial groundwater depletion.

Beyond such examples for a few specific locations, no consensus exists on the
systematic global effects of international trade on long-run water resources and
agricultural production. In the scientific literature, prominent work by Dalin et
al. (2017) finds that the vast majority of traded agricultural goods are produced in
regions depleting their groundwater resources. In contrast, classic work by the geog-
rapher Tony Allan (Allan, 1998, 2011) argues that “global trade enables local water
security” by allowing production in water-abundant locations to support consump-
tion in drier regions. Notably, despite the critical role of international agricultural
markets in this question, existing research has taken place almost entirely outside
of economics. Achieving an understanding of the effects of global trade and agricul-
tural policies on water resources has been held back both by the historical lack of
granular systematic data on water resources, and by the absence of analysis using
frameworks that incorporate equilibrium behavior, long-run dynamics, and welfare.

This paper combines a rich collection of global geospatial data with a quan-
titative dynamic spatial equilibrium model to analyze the effects of global trade
and agricultural policies on regional water scarcity and long-run welfare. We start
by compiling a novel combination of globally comprehensive datasets that convey
a wide range of information about water resources, agricultural activity, and agri-



cultural policy. For water, two datasets recently assembled in the natural science
literature use a combination of direct observations from well monitors, hydrological
modeling, and satellite observations to provide a high-resolution representation of
global groundwater table depths, surface water presence, and trends in total water
resource stocks in recent decades. We combine these data with gridded information
on rainfall, aridity, and soil characteristics relevant to modeling the evolution of
local water accessibility over time. For agriculture, we collect high-resolution global
data on harvested acreage by crop, pastureland, the share of land equipped for ir-
rigation, and potential yields of each crop in each location based on local soil and
climate characteristics, along with crop-level data on water-intensity of production
and country-crop-level data on production, prices, trade, and a summary measure
of the net effective tax or subsidy from a broad range of policy interventions.

We use the data and corresponding scientific literature to establish a set of
five facts about water, agriculture, and trade that frame the analysis. We start by
showing first that water resources exhibit tremendous spatial heterogeneity across
the globe. Some regions have ample access to groundwater, surface water, and
rainfall, while others have both difficult-to-access and declining volumes of water
resources, implying a critical potential role for spatial reallocation in mediating the
global costs of water scarcity. Second, we emphasize the literature showing that
agriculture dominates human water use, which motivates the sectoral focus in this
paper. Third, we show that the vast majority—over 93% —of the world’s agri-
cultural production occurs in locations where farmers use water as an open-access
resource with no formal or tradable property rights, underscoring the importance
of understanding the impact of output market and trade policies in the presence of
this ubiquitous input market failure. Fourth, we present direct empirical evidence
from previous work on the substantial effects of agricultural and trade policies on
the evolution of water resources.

The fifth and most important fact we present shows that water-intensive agri-
cultural activity is, on average, highly concentrated in locations with abundant
water resources. For example, the average water-intensity of agricultural activity
on arable land in regions in the top global quintiles of groundwater availability and
rainfall is two and five times higher, respectively, than in regions in the bottom
quintiles. The relatively water-intensive use of water-abundant regions is driven
both by cropping a larger proportion of the acreage, and by choosing more water-
intensive crops conditional on planting in a given location. Consistent with previous
work in particular regions, the data do also show a small number of regions losing
water rapidly while engaging in highly water-intensive production, such as in parts
of California and the state of Uttarakhand in north India. What is perhaps surpris-
ing, and to our knowledge has not been previously established, is that these regions
constitute an extreme exception to the systematic global pattern. Overall, the facts
suggest that drier regions of the world preserve their limited water resources through
a combination of producing low water-intensity crops locally and importing more



water-intensive forms of agricultural production.

To fully characterize the role of trade in governing global water resources and
explore policy counterfactuals, we next build a dynamic spatial equilibrium model
of water resources and agricultural production, consumption, and trade across many
crops and countries. In the model, farmers on each parcel of arable land on earth
choose whether to plant crops or to work in the non-agricultural sector. They sell
their output in domestic and foreign markets subject to crop-specific subsidies, taxes,
and bilateral trade costs. The productivity of growing each crop depends on local soil
quality, climate, and the cost of extracting the crop-specific requirement of water.
Extraction costs depend on local water scarcity, and the stock of water in each local
aquifer evolves dynamically depending on natural recharge and agricultural land
use, thus embedding the spatial and temporal externalities caused by open access
to the resource. If aquifers draw down over time, crops become more difficult to
produce, agricultural productivity declines, food prices rise, and welfare suffers.

We use the extensive global dataset to calibrate the model for a broad range
of countries that account for 99% of the world’s agricultural workers. Farmers in
the model operate across approximately two million granular “fields” of land that
represent heterogeneous local soil and climate endowments, split across over 200
global “aquifers” that reside within and across countries. We do not impose a
steady-state in the baseline calibration, such that the model reproduces both levels
and current trends in regional water resources. The model simulations include 22
crops that range from globally traded staples such as wheat, rice, maize, soybeans,
and potatoes, to specialty water-intensive cash crops such as coffee, oil palm, and
bananas, to regional crops critical in many drier low-income regions, such as cassava,
sorghum, millet, barley, and chickpeas. We calibrate some model parameters from
the literature, such as using scientific estimates of crop-specific water intensity of
production, and others to match observed data on land use, agricultural production,
and water resource levels and trends.

We use the calibrated model to run three sets of counterfactuals. First, we eval-
uate the fundamental question about the effects of global agricultural trade on water
resource depletion by considering what the world would look like in its absence—i.e.,
simulating a scenario that imposes autarky on all countries and crops starting in our
baseline year. Second, we quantify the effects of historical realized policy reforms
by simulating the impacts of the global agricultural and trade policy liberalizations
prompted by the Uruguay Round of World Trade Organization negotiations that
occurred from 1986-1994. We consider both the effects of the reforms that were im-
plemented in the decades following the signing of the bill by 123 nations in 1994, as
well as the effects of hypothetical further changes that eliminate remaining distor-
tionary agricultural policies across the world. Finally, in future drafts of the paper
we will consider the domestic and global water resource and welfare implications
of stylized versions of two observed unilateral country level policies: an export ban
on rice in India, a critical food exporter that regularly uses export bans to insulate



domestic staple crop prices from global supply shocks, and an import substitution
strategy characterized by import restrictions and domestic agricultural subsidies in
food importing countries such as Egypt and Turkey.

The paper has three key findings. First, we find that existing global trade
dramatically reduces aggregate global land and water use, preventing substantial
dynamic welfare losses from water depletion. Global cropped acreage nearly doubles
in autarky in order for all countries to meet domestic demand in the absence of
the efficiency gains from trade, which channels agricultural activity toward its most
productive global locations. The worldwide share of arable land that is cropped goes
from about one-third in the baseline, which closely matches the data, to nearly two-
thirds in autarky. To our knowledge, these represent the first quantitative estimates
of the effects of global trade on agricultural land use, which could have implications
for other environmental issues beyond the scope of this paper.

Autarky also raises global agricultural water use by about 60% in the initial
period. This sharp increase in global extraction depletes global water resources sub-
stantially over time. Average water table depth across the world’s aquifers is stable
over time in the baseline simulation, which matches the data, but falls by about
27% in the first 30 years of autarky as extraction persistently outstrips recharge.
The decline in global freshwater availability in autarky causes considerable welfare
losses. As water tables fall, crop yields decline, food prices rise, and production
in the outside sector falls as agriculture commands a greater share of productive
resources. We calculate that, when normalizing welfare in the initial period to its
baseline value to net out the static gains from trade, global welfare in autarky falls
by about an additional 2.2% after 30 years due to water resource depletion. Thus,
we estimate that the previously unmeasured dynamic water resource gains from
trade are of the same order of magnitude as traditional measures of the global static
gains from trade (Arkolakis, Costinot and Rodriguez-Clare, 2012).

The second key finding is that water-scarce regions would suffer the worst long-
run water depletion and welfare losses in the absence of global agricultural trade.
The 30-year decline in water tables in autarky is over three times larger for aquifers
initially at the 90th percentile of depth than for the global average. These water-
scarce locations primarily consist of food-importing countries, which require the
largest increases in cropped acreage and water use to sustain domestic consump-
tion in the absence of trade. For these regions with little rainfall and low water
tables, the existence of trade preserves their long-run access to water and prevents
substantial welfare losses—as much as 10-15% of initial consumption—from water
depletion over time. Consistent with previous empirical work (Sekhri, 2022) and
circumstantial evidence, the model simulations do show that imposing autarky re-
verses the trend of declining water resources in a small number of rapidly depleting
food exporting regions, including California’s Central Valley and Northern India,

INote that the welfare calculations in this draft of the paper remain preliminary, and are subject
to change.



which stand out as exceptions in the global distribution of water changes under au-
tarky. In India, welfare is declining over time in the baseline as it depletes its water
resources, but is dynamically stable in autarky when it can no longer deplete its
water stocks to export water-intensive products. For the overwhelming majority of
the world, however, we find that trade in agriculture allocates water-intensive pro-
duction to water-abundant locations, dramatically increasing the spatial efficiency
of production and preserving long-run water availability.

It is worth noting that the strength with which specialization in water-intensive
agriculture follows the resource’s abundance, and the degree to which trade prevents
long-run depletion, is perhaps surprising given not only the prominent examples of
trade-induced water declines in California and India, but also the pervasive market
failures in procuring water as an input. If there are no property rights, no markets,
and no market prices for the vast majority of producers using this input, what
is the mechanism by which its relative abundance maps into specialization? We
show that the economic explanation for this finding is that water scarcity directly
governs its extraction cost. In calibrating the model, we infer the heterogeneous
costs of extraction in each aquifer from the revealed preference of farmers in the
data choosing how water-intensively to use their land. We show that, on average,
input costs for water are substantially higher in locations with lower water tables
and less rainfall. Thus, despite the lack of formal markets or tradable property
rights, water’s effective input price does, at least partially, reflect its scarcity. In
this setting, the natural environment broadly stands in for functioning input markets
by raising the marginal cost of procurement where water is scarce.

The third key finding is that while existing trade generally productively real-
locates water use across space, specific agricultural policy liberalizations can have
the opposite effect and exacerbate depletion. In the counterfactuals we consider, we
find that the Uruguay Round of WTO negotiations, the largest historic liberaliza-
tion of agricultural markets to date, led global agriculture to, on average, reallocate
from water-abundant to water-scarce countries, with corresponding implications for
long-run water availability and welfare. When agriculture became broadly subject to
WTO rules, many wealthier, water-abundant countries substantially reduced domes-
tic support provided to the agricultural sector, while many lower-income countries
removed disincentives to agriculture that were related to import substitution policies
designed to promote industrialization (Anderson, Rausser and Swinnen, 2013).

Our model simulations show that these policy reforms reduced water use in
many water-abundant regions, such as in Western Europe, and increased it in many
scarce locations, such as in parts of Sub-Saharan Africa. In the long-run, these
reforms appear to have slightly exacerbated depletion on average across the world’s
aquifers, and especially so in a large number of relatively dry countries. In contrast,
we show that if remaining domestic agricultural market distortions were removed,
nearly all of which subsidize agricultural production, depletion risks would decrease
slightly both globally and in most dry locations. In general, the results suggest that



the long-run water implications of agricultural and trade policy reforms can vary
substantially across cases, and that reducing output market distortions need not be
beneficial in the long-run in this setting.

This paper builds on related work across several literatures within and beyond
economics. In the literature on the economics of water, most existing papers focus
on the efficacy of input market reforms and related policies that take place in a
single location, such as California, India, or southeastern Australia (Ayres, Meng
and Plantinga, 2021; Bruno and Jessoe, 2021; Ryan and Sudarshan, 2021; Rafey,
2023). A small number of empirical papers consider the role of international trade
in agriculture, including Carleton (2021), which estimates the impact of agricultural
and trade policies on trends in water resources, and Sekhri (2022), which investigates
trade promotion and groundwater depletion in northern India. The paper with the
most relevant empirical work to the facts presented here is Debaere (2014), which
uses country-level data to show that water-intensive exports correlate with water-
abundance, though less so than is observed for other inputs.

To our knowledge, this paper is the first quantitative spatial analysis of the al-
location of global water resources. This work builds on a growing recent economics
literature at the intersection of trade, spatial, and the environment, which is sum-
marized in a review article by Copeland, Shapiro and Taylor (2022). The model in
this paper builds most closely on Costinot, Donaldson and Smith (2016), though
we add water resources and dynamics. Most papers in the spatial environmental
literature focus on climate change and air pollution, but a small number consider
natural resources in the context of forests. Hsiao (2021) investigates the effects of
import tariffs on deforestation for palm oil production in Indonesia and Malaysia,
and Dominguez-lino (2021) considers the land use and deforestation implications
of market power in agricultural supply chains in South America. The most sim-
ilar work to this paper is a new paper by Farrokhi, Kang, Pellegrina and Sotelo
(2023), which uses a global dynamic spatial equilibrium model to study the effects
of agricultural trade on deforestation. The context of forests differs from water in a
number of critical ways, including most notably that the CO2 externality is global
rather than local, and the marginal cost of extraction varies little across space.

As mentioned above, this paper also relates to an older theoretical literature
on trade and natural resources, and a number of papers on “virtual water trade”
published in scientific journals. In economics, Chichilnisky (1994) most prominently
uses a simple two country model to make the qualitative point that the welfare effects
from trade liberalization are ambiguous in a setting with distorted input markets
for natural resources. In the natural sciences, a number of papers consider the
implications of “virtual water trade” for a wide range of topics such as groundwater
depletion (Dalin et al., 2017), inequality across countries (Carr et al., 2015), and
climate change (Konar et al., 2013). Since these papers do not contain economic
models of supply, demand, and trade, however, they do not quantify counterfactual
policies, equilibrium reallocation, long-run dynamics, or welfare.



The paper proceeds as follows. Section 2 describes the wide array of geospatial
data compiled in this paper, and Section 3 uses it to establish a set of stylized
facts that frame the analysis. Section 4 lays out the model, and Section 5 shows
how we calibrate it to match the data. Section 6 shows results from the policy
counterfactuals, and Section 7 concludes.

2 Data

We start by compiling a wide array of geospatial datasets to assemble what consti-
tutes, to our knowledge, the largest collection of global data on water and agriculture
yet to be used in economics.

2.1 Spatial Data on Global Water Resources

Our analysis of the spatial allocation of water resources draws primarily on two
scienti ¢ datasets novel to the economics literature that provide information on
levels and trends of water availability throughout the world.

Groundwater Table Depth

We collect globally comprehensive data on a cross-sectional measure of water table
depth from Fan, Li and Miguez-Macho (2013)2 This scienti ¢ paper begins by com-
piling water table depth observations published in government or scienti ¢ sources
from over 1.6 million wells located across all six populated continents. The paper
proceeds to create a continuous spatial dataset by interpolating between well obser-
vations using a hydrological model calibrated to detailed spatial data on climate,
geology, elevation, and soil characteristics. Together, the empirical observations and
model simulations are used to produce global estimates of the depth of the water
table in meters from the surface at a 30 arc-second (approximately 1km) resolution.
This data provides estimates of the water available to farmers from both ground-
water and surface water. For farmers who irrigate their crops using groundwater,
well depth plays a critical role in their costs of extraction since it is costlier to pump
water from further underground.® Other farmers irrigate crops from surface water,
which is typically lower cost where available. Approximately 37% of global irrigated
land relies on groundwater, and 63% on surface watet. The data from the hydro-
logical model simulations in Fan, Li and Miguez-Macho (2013) provides information
on the presence of surface water by marking these areas with water table depth
readings of less than zero. The paper estimates that 15% of global land area is

2Note that we use the updated version of the dataset accessed here, which corrects for some
known errors in the 2013 version.

3See Hendricks and Peterson (2012) for analysis of how extraction costs vary with well depth.

4This statistic comes from our calculations using data from the Monthly Irrigated and Rainfed
Crop Areas (MIRCA2000) dataset produced by Portmann et al. (2010).



covered by lakes, rivers, and inundated wetlands (this proportion excludes oceans,
seas, and other large water bodies such as the Great Lakes).

The data on both water table depth and surface water availability plays a
critical role in the calibration of the costs of water extraction that follow in this
paper. The drawback of this dataset, however, is that it contains only cross-sectional
information on water availability, limiting its ability to inform about water resource
dynamics that exist in the world and are represented in the modef

Trends in Total Water Availability

The second key water dataset in this paper contains globally gridded information
on trends in the total volume of local water resources over the period from 2003
through 2016° The data is collected by the Gravity Recovery and Climate Ex-
periment (GRACE) partnership between the U.S. National Aeronautics and Space
Administration (NASA) and the German Deutsche Forschungsanstalt far Luft und
Raumfahrt (DLR). The scienti ¢ procedure underlying this data exploits satellite
measurements of the gravitational force exerted by each location on Earth to infer
its change in mass, and consequently total water storage, over time. Tapley et al.
(2004) show that the time-series changes in regional mass uncovered by GRACE
primarily consist of changes in local water content’

The GRACE data provide month-by-month changes in total water storage (
TWS) measured in centimeters of equivalent water height for 41,168 equal-area
parcels of the Earth, which measure 1 1 at the equator. Because the data infers the
change inall water contained in a given region, the trends represent the combined
evolution of groundwater, surface water, soil moisture, snowpack, and ice over time
(though the latter two components are less relevant on the arable land that is the
focus of this paper). This data has been used widely in the scienti c literature to
study topics ranging from ice sheets to ocean currents to groundwater storage on
land, but has been almost completely absent from economics.

The primary drawback of the GRACE data is that the measurement of trends
inferred by the satellite measurements provides no information about thelevel of
groundwater or surface water in any location at any point. Thus, we couple the
time-series data on trends from GRACE with the cross-sectional data on levels of
groundwater and surface water from Fan, Li and Miguez-Macho (2013) to provide

5The exact years of water table depth observations in Fan, Li and Miguez-Macho (2013) vary
across regions, but end in 2009.

5This time period corresponds to the original GRACE satellite mission. A follow-on mission
continues to extend this time frame, but we limit our analysis to the original mission for consistency
reasons and because these years overlap with other agricultural data used.

"See Carleton (2021) for a more complete description of the GRACE data.

8Equivalent water height is de ned as the depth of water that would be present were it to be
spread evenly across the entire surface of a grid cell.

9The two exceptions to this that we are aware of are recent work by Taylor (2022) and a related
preceding paper by Carleton (2021).



a more complete picture of the recent status and dynamic evolution of water avail-
ability throughout the world.

Other Hydrological Data

We supplement the two primary datasets on water availability described above with
a range of other relevant global spatial hydrological datasets. We use data on cumu-
lative precipitation at 0.25 0.25 resolution from the Global Meteorological Forcing
Dataset (GMFD) version 3 from Princeton University (She eld, Goteti and Wood,
2006). We also collect satellite data on the presence of surface water at a 30 meter
resolution from Pekel et al. (2016) as a complement to the measure available in the
Fan et al. (2013) data.

We collect several datasets relevant to calibrating the law of motion for local
water stocks in the model. These include global spatial data at the 30 arc-second
resolution on aridity, a measure of evapotranspiration potential that governs the
proportion of rainfall that contributes to recharging local water stocks. This data
is produced by Trabucco and Zomer (2019) and made available by the CGIAR
Consortium for Spatial Information. In addition, data on soil type from Hengl et
al. (2017) and speci c yield by soil type from Loheide et al. (2005) contribute to
mapping changes in the volume of water in a given location to changes in water
table depth in the model simulations.

2.2 Global Agricultural Datasets

We collect global spatial data on agricultural land use and potential crop productiv-
ity, crop-level data on water use, and country-level data on agricultural production,
consumption, trade ows, and policy interventions. The details are as follows.

Agricultural Land Use

We use global spatial data on agricultural land use at a 10km 10km resolution
compiled by Monfreda, Ramankutty and Foley (2008). These data use a combination
of remote sensing and census records from national and subnational government
entities to estimate the fraction of land area in each grid cell allocated to planting
each of 175 crops, and to pasture land, in the year 2000. In this paper, we use
the union of cropped area and pasture land as the de nition of arable land with the
potential for cultivation.

We supplement the data on crop choice and land use with additional spa-
tial data that measures the proportion of agricultural land equipped for irrigation.
This dataset is called the Global Map of Irrigation Areas, and is compiled by the

0while more recent products exist for aggregate cropped area, such as Potapov et al. (2022),
updated estimates of crop- and pasture-speci c areas are not available.



United Nations Food and Agriculture Organization (FAO) and Rheinische Friedrich-
Wilhelms University. The data comes at the 5 arc-minute resolution and contains
estimates for the year 2005.

Potential Yields

The second global spatial agricultural dataset comes from the FAO's Global Agro-
Ecological Zones (GAEZ). This data contains potential yields for 38 crops at 5 arc-
minute resolution, estimated using an agronomic model that incorporates detailed
local information on soils, geography, and climate. The model provides crop-speci c
estimates of the maximum yield attainable under a range of possible assumptions
about farmer inputs and climate conditions.

Critically, this data provides estimates of potential yields for all crops in all
locations, including those that have not been historically observed in a given place.
This allows for a rich representation of regional comparative advantage in agriculture
and for counterfactual model simulations in which crop choice can shift meaningfully
across location. Costinot et al. (2016) pioneered the use of this data in quantitative
trade models. In our implementation, we follow their work in using the high-input
yield estimates, but restrict attention to the historical climate scenario that uses
average weather from 1961-1990. We take the weighted average of \rain-fed" and
\irrigated" potential yields, using the data on the area equipped for irrigation in
each location to assign weights between the two.

Crop Speci ¢ Water-Intensity of Production

We use data from Mekonnen and Hoekstra (2011) to estimate the average global
water-intensity of each crop. These estimates are denominated in units of fof
water used as an input per ton of output for each crop. We combine them with
data on the average global yield of each crop to construct a dataset of crop-specic
water intensities denominated in units of m® per hectare. Note the caveat that
Mekonnen and Hoekstra (2011) provide only an average global estimate of crop
water use without any heterogeneity, so a data limitation of the analysis is that we
cannot account for changes in water use arising from di erent techniques of growing
a given crop.

Production and Trade

We collect data from FAOSTAT on crop-speci ¢ production in metric tons along
with farm-gate prices measured in USD per ton. The data is available for over 200
countries from 1961-2020, though in our implementation in the model calibration
we use a cross-section of the data for a subset of countries in 2009. We also use data
on bilateral trade ows by crop for the same year from the UN Comtrade database.
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Agricultural Policy

Government interventions in agricultural markets play a critical role in this paper.
Analyzing these policies in an international context, however, is complicated by the
wide array of relevant policy tools with interacting and overlapping e ects, includ-
ing output taxes and subsidies, input subsidies, import tari s, quotas, sanctions,
and regulations. Furthermore, these policies are implemented within institutional
contexts that di er substantially across countries, such that their de nition and
interpretation may not be consistent across locations.

We overcome these challenges by using data from the World Bank's \Distor-
tions to Agricultural Incentives" (DAI) project, which constructs an internationally
comparable measure of agricultural policy interventions that is both comprehensive
and parsimonious. Included in these data is a single summary statistic, known as
the \Nominal Rate of Assistance" (NRA), measured for 80 products in 82 countries.

The NRA captures the equivalent product-speci ¢ net subsidy or tax that re-
sults from the combined e ect of the full range of policies that include direct taxes
and subsidies, tari and non-tari barriers to trade, and government manipulation
of foreign exchange markets (Anderson et al., 2008). The NRA measure - positive
for net subsidies and negative for net taxes - can be interpreted as the percent-
age di erence between domestic farm-gate prices and international prices for the
same product, excluding transportation and distribution costs. Critically, the mea-
sure does not include any water-speci c policy interventions, such as subsidies for
agricultural energy use or irrigation.

The DAI data has been used previously to study topics ranging from political
economy (Anderson et al., 2013) to agricultural productivity (Adamopoulos and
Restuccia, 2014). In this paper, we use this data to investigate the spatial correlation
between agricultural policy and water resources in Section 3, and to calibrate the
output market distortions in the model in Section 4.

3 Stylized Facts

3.1 Five Facts About Water and Agriculture

We begin the analysis by bringing together the data presented in Section 2 with a
synthesis of the relevant scienti ¢ and institutional context to establish ve key facts
about water and agriculture that frame the quantitative model analysis to follow.

Fact 1. Water resources exhibit tremendous spatial heterogeneity

We start by summarizing the global data on water resources. Figure 1 shows the
global distribution of average annual rainfall, groundwater table depth, and trends
in total water storage across all the arable land on earth. The maps show enormous
variation in both the levels and trends of water available in each location.
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Annual average rainfall varies by almost two orders of magnitude across the
world's land that is suitable for crop production. The median parcel of global
arable land receives 7,850 rhper hectare of rainfall per year, and the 1st to 99th
percentile ranges from 500 to 33,550 Atha. For context, the most water-intensive
staple crop, rice, requires about 8,790 ffha of water per year on average, and the
most water-intensive specialty crop, almonds, use about 22,200 #ha. ! Less than
45% of the world's arable land receives enough rainfall to supply full coverage of
rice acreage without drawing down their stock of water in steady-state, and less
than 9% receives enough to do so with almond$? In contrast, the driest 36% of
global arable land receives less rainfall than is required even to cover all acreage
with barley or millet, the least water-intensive staple crops, which use 5,080 and
4,300 n¥/ha, respectively. To be sure, these proportions do not represent a binding
limit on the share of regions that can grow each of these crops since farmers can
plant on a subset of acreage or irrigate their crops from existing stocks of surface or
groundwater, but average water consumption by crop provides a useful benchmark
for contextualizing global rainfall totals.

Existing stocks of groundwater show similarly sharp heterogeneity. In addition
to the 15% of the world's surface area that Fan, Li and Miguez-Macho (2013) show
are covered by local bodies of surface water (e.g. small lakes, rivers, and wetlands)
that can be used for irrigation, 19% of arable land area has easily accessible ground-
water within one meter of the earth's surface. On the other hand, a large share of
potentially cultivable land lies above groundwater that is di cult to prohibitive to
access for irrigation. Just over 62% of the world's arable land exists in locations
with groundwater deeper than eight meters from the earth's surface, a cuto below
which irrigation extraction costs become discontinuously more expensive (Sekhri,
2014). Note that while the data on groundwater depth identi es only the top most
part of the water table, this information is generally su cient to represent both the
costs of extracting water for farmers and the usable stock of groundwater available
since the bottom of the water table predominantly lies far below the level feasible
for extraction.

The dynamic measure of trends in total water storage also varies widely across
the world's arable land, previewing future availability if current patterns continue.

In total, over the period from 2003 through 2016 just under 50% of the world's arable
land was losing water (recall that the satellite-based measure accounts for all water in

1 The data on water use by crop comes from Mekonnen and Hoekstra (2011), as explained further
in Fact 3.

2These and related statements are highly conservative estimates, as they implicitly assume per-
fectly e cient agricultural water consumption. When irrigation and/or rainfall water is applied to
an agricultural area, some fraction of that water is used productively by the crop, but a substantial
amount of it is lost to runo. No comprehensive estimates of runo exist, so the statistics we
report in this section conservatively assume perfectly e cient water use (and therefore no runo ).
Accounting for runo would imply that fewer regions of the globe have su cient rainfall to supply
the most water-intensive crops.
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a region, including both groundwater and surface water), while the other half was
gaining water. Some regions show sharp di erences across subnational locations,
whereas others have more consistent broader regional patterns. For instance, the
southwestern U.S., western Australia, and northern India are all losing water, while
the midwestern U.S., eastern Australia, and central India are all gaining. On the
other hand, western Europe is largely homogeneously gaining water, while the vast
majority of the Middle East and Argentina are losing water.

It is worth noting that the magnitudes of trends in total water storage are
rather modest across the world. The 1st to 99th percentile of arable land ranges
from losing 218 nf/ha to gaining 197 m3/ha. For context, median global rainfall
on arable land is about 7,850 ri/ha. Thus, the data implies that, on net, the time
trends of water available in each location are small relative to the gross ows of
rainfall and water consumption.

In general, heterogeneity in input abundance across locations governs the strength
of comparative advantage and the potential gains from trade. Given the consider-
able variation in the static and dynamic measures of water availability across the
world, the data suggests a strong role for the spatial allocation of production in
water-intensive tradable goods in maximizing the present and future value of the
world's water resources.

Fact 2: Agriculture dominates global human water consumption

Agricultural production accounts for approximately 70% of global water withdrawals
by humans, including withdrawals from surface, ground, and soil for use in industrial
production, energy generation, and manufacturing (Dubois et al., 2011). However,
agriculture is responsible for an even larger share of the water actuallgonsumedby
human activity, because agricultural crops evapotranspire a large share of applied or
precipitated water, such that it is lost to the local environment. In contrast, other
water-extracting activities, like power plant cooling, withdraw signi cant quantities
of water, but immediately return them to streams, aquifers, and soils. Re ecting
this, leading scienti c evidence indicates that 92% of globalconsumptive water use
by humans is dedicated to agricultural production (Hoekstra and Mekonnen, 2012).
Hoekstra and Mekonnen (2012) traces water used in agricultural production
throughout its supply chain. Speci cally, the paper quanti es agricultural water
consumption throughout the world at the 5 arc-minute resolution using a model
that combines hydrological and agronomic mechanisms with detailed spatial data on
climate and soil conditions, crop planting and harvesting dates, irrigation techniques,
information on farmer inputs such as nitrogen, and the Monfreda, Ramankutty and
Foley (2008) dataset on land use. Animal products account for approximately one-
third of global water use when accounting for crops grown as feedstocks, though only
0.5% of that total comes from the water directly consumed by livestock. Industrial
production accounts for only 4.4% of global water use, and domestic water supply
for direct commercial and residential use for only 3.6%. The quantitative ndings
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from this paper are corroborated in a recent review article by d'Odorico et al. (2019),
which states that multiple scienti ¢ papers have concluded that approximately 90%
of human consumptive use of water arises from agricultural production.

Hoekstra and Mekonnen (2012) and Carr et al. (2013) both also estimate that
agricultural goods traded across country borders account for 20-25% of global wa-
ter consumption. Relatedly, Dalin et al. (2017) calculate that 11% of groundwater
extracted in excess of natural recharge is embedded in traded agricultural prod-
ucts. Thus, the water used to produce the consumption of the average person in
a given country can di er substantially from the per capita domestic water use in
production. For instance, Hoekstra and Mekonnen (2012) estimate that over 70%
of implied water consumption is embedded in imported products for consumers in
several Middle Eastern countries, including Lebanon, Yemen, Israel, Jordan, and
Kuwait. Overall, the ndings from the scienti c literature suggest that analyzing
the allocation of global water supplies requires a strong focus on agricultural markets
and a critical role for international trade.

Fact 3: Local markets with tradable water rights rarely exist

Water is a classic example of a common pool resource in which open access to
extraction creates externalities. When property rights are not clearly de ned and
farmers draw down the local stock of water, they raise the cost of extraction for other
farmers with access to the resource both in the present and future. Thus, the social
costs of using water exceed the private costs. Furthermore, even when property
rights are de ned, they may be allocated on the basis of historical presence or other
institutional arrangements without a clear market-based mechanism for allocating
the resource to its highest value uses.

Research has shown that the implementation of environmental markets that
allow for trade in water property rights have large benets. For instance, Rafey
(2023) quanti es the bene ts of trading in the world's largest water market in the
southern Murray-Darling Basin in Australia. Similarly, Ayres, Meng and Plantinga
(2021) and Bruno and Jessoe (2021) study water markets in California's Mojave
Desert and Coachella Valley, respectively. Each of these papers nds substantial
gains in total surplus from allowing users to trade water rights. The presence of
well-de ned property rights and input markets allows water to ow to those uses
with the highest value, reducing the total extraction necessary to achieve a given
level of output.

Despite the theoretically and empirically documented bene ts of tradable prop-
erty rights for water, the existence of such markets remains exceedingly rare. We
conduct an extensive review of the global status of water property rights, and nd
that at least 94% of the world's agricultural output occurs in regions with
no formal mechanisms for farmers to trade water . In addition to the water
markets in Australia and California described above, we nd that formally estab-
lished tradable property rights for water also exist in Chile, Mexico, Spain, South
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Africa, Oman, and a number of other states in the western U.S.3 Taken together,
these regions account for about 6% of the world's agricultural production value un-
der a conservative estimate that assumes these water markets cover all agricultural
activity in a jurisdiction (which is not true in most cases).

We nd that some additional water trading occurs outside the small number of
established formal markets, though without clear mechanisms to resolve the common
pool resource challenge. For example, informal water trade has been documented
in parts of India, Pakistan, and China (Saleth, 2004; Zhang et al., 2008; Easter
et al.,, 2018)!* While the potential existence of trade might improve allocative
e ciency in these regions to some degree, however, there is no mechanism in the
informal markets for restricting the total water allocation to a level at which the
price re ects the resource's scarcity value. On the other hand, some locations, such
as India, have implemented rationing schemes that reduce overextraction without
achieving gains in allocative e ciency (Ryan and Sudarshan, 2021).

Even in those limited locations that have established formal property rights
intended to optimize the use of water, implementation challenges remain prevalent.
In many regions, transaction costs remain high enough that little trade occurs in
practice. While the volume of water traded during droughts accounts for over 20%
of usage in Australia and Chile, market trading volumes constitute only 5% of ex-
traction in Spain and less than 1% in South Africa (Grafton et al., 2020)1° Debaere
et al. (2014) and Easter, Rosegrant and Dinar (2018) document the wide array of
institutional challenges that face even the best e orts to establish successful local
water markets, which have been implemented with varying degrees of success across
the locations in which they exist.

Overall, our review of the global institutional context suggests that the market
failures a ecting input markets for water remain broadly intractable in most places.
Research suggests that a few local water markets have yielded large bene ts, par-
ticularly those in southeastern Australia and the western U.S., but the widespread
implementation of such successful programs remains elusive. If tradable property
rights schemes in which the price of water re ects its social value could be success-
fully scaled up across the world, analyzing challenges associated with water scarcity
at a local scale would be su cient. The rst best policy in the model presented in
Section 4 would be to eliminate both input side market failures and all distortions

130ther U.S. states with formal water markets for farmers include Arizona, Colorado, Idaho,
Montana, Nevada, New Mexico, Oregon, Texas, Utah, Washington, and Wyoming (Grin and
Characklis, 2011; Phillips et al., 2020; Schwabe et al., 2020). For more information on the other
water markets, see Easter and Huang (2014) and Grafton et al. (2020) for broad global overviews,
Donoso (2012) for more details on Chile, Hearne and Trava (1997) and Kloezen (1998) on Mexico,
Palomo-Hierro et al. (2015) on Spain, and Young (2012) on Australia.

4 China has also developed a national China Water Exchange in which regional public authorities
can trade water amongst themselves, and smaller pilot programs in six provinces that allow for
farmer-to-farmer water exchange (Wang and Yang, 2018).

15Based on similar measurements, Rafey (2023) estimates that traded water rights account for a
maximum of 1% of the world's freshwater withdrawals.
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a ecting output markets. As long as local property rights market failures remain
ubiquitous, however, this paper makes the case that the global spatial allocation of
water-intensive production plays a key role in mediating their welfare e ects.

Fact 4: Agricultural policy plays a critical role in water use

An expansive literature in agricultural economics seeks to estimate the supply elas-
ticity of crop production with respect to output prices, and more recent evidence
establishes a direct link between agricultural policy and water consumption. For
instance, on supply elasticities, Roberts and Schlenker (2013) estimate the impact
of global prices on global production for four staple crops - rice, maize, soybeans,
and wheat - and a number of other studies produce similar estimates for a sin-
gle country (e.g. Hendricks, Smith and Sumner, 2014; Scott, 2014). The estimates
showing that output prices meaningfully a ect production imply an important role
for subsidies, taxes, and tari s that function by in uencing prices. Some studies
have gone further to demonstrate the role of policy directly, including papers such
as Hendricks, Smith and Villoria (2018) that measure the impact of the Nominal
Rate of Assistance (NRA) index described in Section 2 of this paper.

Estimates suggesting that agricultural policy plays an important role in driving
crop production imply that policy also meaningfully a ects water use, and previous
work by Carleton (2021) quanti es this link directly. That paper measures the global
impact of NRA on TWS using panel regressions that control for regional time xed
e ects and a vector of time-varying climate controls. The analysis nds large e ects
of agricultural subsidies on water storage. On land with cropped area, each 10
percentage point increase in net agricultural subsidy changes the annual trend in
total water storage by about 45 m?/ha, approximately equal to moving from the
median global parcel of arable land to the 25th or 75th percentile. A 100 percentage
point movement in the NRA, which is well within the range of global policy variation
in the cross-section and even over time within some individual countries, would take
a location from the bottom 1% to the top 1% of global arable regions in TWS.

The e ects of NRA on TWS in Carleton (2021) are larger for subsidies to
more water-intensive crops and in regions with greater suitability for the subsidized
crops, and are not detectable at all in placebo checks on regions without cropped
area. Overall, the magnitude of the estimates suggests that even modest changes
in agricultural policy can play a critical role in shaping the dynamic evolution of
water availability over time. In contrast to the literature review described above in
Fact 3 that suggests that local water market policies have had limited global reach,
agricultural market interventions are ubiquitous around the world. The analysis in
Carleton (2021) suggests that such policies can be a powerful tool to optimize global
water consumption in agriculture. However, the degree to which existing policy, and
the current distribution of agricultural activity, resembles the optimal allocation of
global water resources remains undetermined.
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Fact 5: Farmers largely plant water-intensive crops in water-abundant
regions, but also in regions with rapidly declining water resources

If global water use were optimized in the production of tradable goods, we should
expect water-intensive production to disproportionately occur in water-abundant
locations. This prediction follows from standard trade theory, such as the Heckscher-
Ohlin model, in which relative factor abundance drives comparative advantage. In
our dynamic setting, places with more water resources can also sustain more water-
intensive crops in the long-run without drawing down their stocks of water. Thus,
while water is only one of many inputs that govern crop suitability (e.g. soil quality,
temperature, precipitation) and we should not expect water availability to explain all
the variation in global land use, an e cient allocation of global agriculture is likely

to be broadly marked by water-intensive crops grown in water-abundant locations.

We evaluate this hypothesis by using the spatial datasets described in Section 2
to examine the global relationship between land use and water availability. We start
by dividing the world's arable land into deciles of each of the three main measures
of water resources: rainfall, groundwater table depth, and changes in total water
storage ( TWS). For each water variable, we then calculate the proportion of each
crop's global acreage that exists in each of the 10 deciles of water availability. Figure
2 shows the resulting patterns for a selection of major crops and water-intensive
specialty crops.

The results in Figure 2 suggest that the correlation between planted acreage
and water availability varies substantially across di erent water-intensive crops. For
instance, rice, the most water-intensive of the major crops, is overwhelmingly con-
centrated in the world's most water-abundant regions. Over 93% of the world's rice
acreage exists in locations with above median rainfall, and about 84% is in locations
with above median groundwater tables (there is only a modest correlation between
rainfall-abundant and groundwater-abundant regions, so these measures are largely
independent). Even just the top decile of regions in both the rainfall and groundwa-
ter measures each account for a highly disproportionate share of global rice acreage
around 20%. Overall, planting rice is ubiquitous in the world's wettest regions, but
exceedingly rare in the world's driest regions.

Conversely, almonds, among the most water-intensive specialty crops, are pri-
marily grown in relatively dry places. Over 85% of the world's almond acreage exists
in locations below the global median of groundwater table depth, with well over half
just in the bottom three deciles. Similarly, about 92% of almond-producing acreage
is in locations below the median of global rainfall. Over 14% of the world's almonds
grow just in California in regions below the world's 30th percentile of rainfall and the
world's 15th percentile of groundwater tables. Given this discrepancy in patterns
across individual crops, drawing broad conclusions about the spatial allocation of
water-intensive agricultural activity requires a more comprehensive measure than
analyzing crops one by one in isolation.

To produce a more systematic summary of the global relationship between
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crop choice and water resources, we construct a simple index of the water-intensity
of land use across all crops. To do so, we start with the scienti ¢ estimates from
Mekonnen and Hoekstra (2011) of the average global water-intensity of each crop,
denominated in units m® of water used per acre planted for each crop. Using these
estimates in conjunction with the Monfreda, Ramankutty and Foley (2008) data
on acreage allocated to each crop, we calculate the acre-weighted average water-
intensity of land use in m3 per hectare for each parcel of global arable land. This
calculation covers 115 crops that account for over 99.99% of total global planted
acreage. Note that we assume that pasture land entails no human water use in this
exercise, such that the measure of water-intensive land use also accounts for the
extensive margin of whether to plant crops at all.

Figure 3 shows the average water-intensity of land use by decile of water avail-
ability for each of the three main variables. The results suggest that water-intensive
agricultural production strongly clusters in those regions with high water tables and
ample rainfall. The average water-intensity of land use increases nearly monoton-
ically across deciles of both groundwater access and long-run average rainfall. On
average, arable regions in the highest quintile of global groundwater tables have
production that is more than twice as water-intensive as that of the lowest quintile.
Even more strikingly, the rainiest quintile of places in the world use nearly ve times
more water per acre of arable land than the least rainy quintile.

This pattern of more water-intensive land use in wetter regions is driven both
by allocating more arable land to crops, and by choosing more water-intensive crops
conditional on planting. When restricting the analysis to cropped area, the top
quintile of groundwater and rainfall regions choose crops that use about 20% and
200% more water per acre than the bottom quintile regions, respectively. Thus, these
cross-sectional measures of land use and water availability suggest a strong role for
resource abundance driving comparative advantage and patterns of specialization.

The correlation between water-intensive land use and the dynamic measure of
water availability - trends in total water storage - shows a very di erent pattern in
Figure 3. In contrast to the static measures of groundwater and rainfall in which
water-intensive production is highly concentrated in water-abundant regions, Figure
3 shows that the decile of regions in the worldosing water most rapidly in the period
from 2003-2016 have thehighest water-intensity of production. While the average
acre of arable land in the world uses about 2500 Aiha of water, the average acre in
the bottom decile of TWS uses over 3100 m¥/ha. Thus, while the rst two panels
of Figure 3 show that water-intensive production is concentrated in regions that
are currently water-abundant, the third panel suggests that some locations planting
water-intensive crops could be at risk of future depletion if current trends continue.

Examining Figure 3 further, it is worth also noting that the second through
tenth global deciles of TWS show a modest positive correlation between trends in
water availability and water-intensive land use, suggesting that the concurrence of
water-intensive production and rapid water loss is restricted to a small number of
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regions. In these regions that comprise the bottom decile of TWS, the ratio of
cropped acreage to arable land is about 21% higher than the world average (46%
as compared to 38%), and the average water intensity of chosen crops conditional
on planting is also about 25% higher than the world average. Rice, the most water-
intensive staple crop, accounts for about 18% of cropped area and 27% of agricultural
water consumption in these regions, compared with 16% and 45% for the world
overall. Nearly 20% of the arable land area in the bottom decile of TWS is
located in China, with about 10% each in India, Argentina, and Brazil.

Restricting attention to the 1% of global arable land losing water most rapidly
reveals an even sharper pattern of water-intensive production. The average water
intensity of land use in the bottom 1% is nearly 3700 ni/ha, more than 10% higher
than the bottom decile as a whole and almost 60% higher than the world average
of 2500 ni/ha. The proportion of cropped acreage is 58% higher in the bottom 1%
than the global average, and rice accounts for about 20% of cropped area. About
75% of these extremely rapidly depleting regions are in three countries - India,
Argentina, and Chile. To take a particularly extreme example, the Indian regions
in the bottom 1% of TWS, which are primarily located near the capital of New
Delhi and in the northeastern state of Uttarakhand, have crops planted on over 80%
of their arable land with an average water-intensity of land use of over 8300 r#fha,
well over three times the global average. These India regions are losing water at a
rate of over 300 n¥/ha per year, a pace that will reduce the stock of water by the
equivalent of annual average rainfall approximately every two decades.

While some of the regions losing water rapidly and planting water-intensive
crops might not face a risk of serious water depletion in the near future, we also nd
some evidence of water-intensive land use in regions with declining resourcasd low
existing stocks of groundwater in the cross-sectional data. Figure 4 shows the water
intensity of land use for regions that fall in the bottom quatrtile of two or more of the
three measures of water availability. Encouragingly, the gure shows that the most
water-intensive land use occurs in regions that do not fall in the bottom quartile of
any of rainfall, groundwater, or TWS, and that regions with low rainfall and low
or declining stocks have very low water-intensity, consistent with the overall results
in Figure 3.

Less favorably, the results in Figure 4 also show that the water-intensity of land
use is substantial in those regions that fall in the bottom quatrtile of both the stock of
groundwater and the trend in total water storage, which comprise about 7.1% of the
world's arable land. Conditional on planting crops, the water-intensity of cropped
area in those regions is about 20% higher than the global average, approximately
equal to those regions that fall in the bottom quartile of none of the three variables.
While the overall water-intensity is lower than the global average because only 26%
of arable land is cropped, compared with 40% for the world as a whole, the data is
consistent with a nontrivial role for water-intensive agricultural production in those
regions with low and declining stocks of water that might be at the greatest risk of
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incurring serious costs from near term depletion.

Overall, the static measures of water availability in the data demonstrate a
dominant pattern of water-intensive global agricultural production concentrating in
presently water-abundant regions, but the dynamic measure of water trends reveals
a small share of regions that have very water-intensive land use and rapidly de-
clining water resources. The ndings that the spatial pattern of global agricultural
activity re ects an important role for water as a source of comparative advantage
are consistent with those of Debaere (2014), which analyzed country-level patterns
of exported products and water abundance. This paper is the rst to collect the
comprehensive global spatial data necessary to examine the relationship between
agricultural activity and several measures of water availability across each granular
parcel of arable land on Earth. In particular, the novel scienti ¢ datasets on ground-
water table levels and trends in total water storage convey information about both
the static and dynamic relationship between water and agriculture that have not
been previously documented in the spatial environmental economics literature. The
following sections provide further investigation of the welfare and policy implications
of these facts.

4 Model

4.1 Basic environment

Time is discrete and indexed byt 2 N. The world economy consists of multiple
countries, indexed byi 21 f 1;:::;1g, where consumption and production take

water is extracted to be used in production® Motivated by Fact 3, we make the

simplifying assumption that the groundwater in each aquifer is a common-pool re-
source, available at the cost of extraction to any that cultivate the land above that

aquifer.

of which is within some country i and above some aquiferg.’’ Fields comprise a
continuum of heterogeneous parcels, indexed by. All elds correspond to 5-arc-
minute grid cells. Because the surface of the earth is curved, grid cells at di erent
latitudes cover di erent areas (with larger grid cells closer to the equator). We let
h' denote the area in hectares of eldf .

Atomistic laborers in each country can choose to either farm their assigned
parcel, earning the revenue from their harvest, or work for a wagew; producing an
outside good, which we think of as a composite of manufactured goods$. A farmer

18 Aquifers occur naturally and therefore need not be circumscribed by country borders.

7 Accordingly, objects that vary at the eld level will not have country- or aquifer-speci ¢ sub-
scripts. When we need to refer to the country in which eld f is located, we'll write i(f). Likewise,
we'll write q(f) for the aquifer below eld f.

8Because laborers are assigned to parcels one-to-one, we sometimes ubkeas an index of laborers.
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uses his own labor to extract groundwater, which he combines with his land and

41.1 Preferences

In each country i there is a representative household who lives hand-to-mouth and
derives utility in each period from consuming the outside good,C?, and an agricul-
tural composite, Cj; :

Ui = C{ + iInCy: (1)

Since the upper-level utility function in equation (1) is quasilinear, there are no
income e ects. The total demand for crops depends only on a country-specic
demand shifter, ; 0.

The agricultural composite, Cit, depends on the consumption of each cropCk,

which itself depends on the consumption of varieties from di erent origins,Cj'i‘t :

" X e
1= 1
Cit = ¥ Ci (2)
k2K
and 2 3
X = EEU
Ck =4 s Cff 5 3)

j2l
where > 0 denotes the elasticity of substitution between di erent crops (e.g., corn
vs. soybeans) and > 0 denotes the elasticity of substitution between di erent
varieties of a given crop (e.g., Chinese vs. American soybeans). The last preference
parameters, i" 0 and j'f 0, are crop- and crop-origin-speci ¢ demand shifters

for country i.

4.1.2 Technology

In the agricultural sector, we assume that water and parcels of land are used in
xed proportions in the production of each crop. By combining land LI" () with
groundwater GIk (') and a fraction Htfk (V) of his labor endowment, the farmer of
parcel! can produce

" W 4

h i fk
Q¥ ()= ARy K@) min Likq) S ) : @)

where Af (1) 0 denotes the total factor productivity of parcel ! in eld f if
allocated to crop k, and X measures the water intensity required to grow cropk
anywhere.
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The technology in (4) exhibits constant returns to scale in the three inputs,
so the restriction to parcel-sized farms is without loss. Unlike the familiar Cobb-
Douglas technology, which would impose a unit elasticity of substitution between
each input, the technology in (4) imposes that land and groundwater be strict com-
plements. This complementarity is intuitive: too little water and the crops will dry
out and wilt; too much, and they will drown. 19

Analogous to the approach in Eaton and Kortum (2002), we assume that TFP
is independently drawn for each parcel from a eld-speci ¢ Fechet distribution:

n o ( X ak )
P AfY1) aliii A () & =exp ATC (5)

k2K

where > 1 measures the extent of technological heterogeneity within each eld
and the constant is set such thatA™ = E[AT (1)].2° The term A’k 0 measures
the comparative and absolute advantage of a eld in producing particular crops.

To extract the groundwater needed to irrigate his parcel! , a farmer must al-
locate the remaining fraction 1 Htfk (') of his labor endowment. Groundwater
extraction is under constant returns to scale in the farmer's labor only. His produc-
tivity in extraction, however, is assumed to vary with the current depth of the water
table below his parcel. Intuitively, it requires more labor to draw up one cubic meter
of water from an aquifer with a low water table than from one whose table is near
the surface. In particular, let Dq: denote the depth of the water table in aquifer g
in period t. Then the corresponding labor productivity of groundwater extraction
is given by

A%(Dq)= Dy : (6)

We recognize that groundwater is not the only source of water available to support
crop production, which can also benet from rainfall and surface water irrigation,
and that the costs of groundwater extraction can vary across locations for a variety
of reasons, such as technology or energy costs. Thus, we allow the parametey
to vary by aquifer, such that extraction productivity conditional on groundwater
depth can di er across locations with di erential access to rainfall, surface water,
and technology, among other things.

The outside good is produced under constant returns to scale using labor only.
The productivity of each worker in the outside sector, A(! ), is also drawn inde-
pendently from a Fechet distribution with the same shape parameter

( )

(o]
PfAP(') a°g=exp % (7)
|

¥Making the complementarity strict is for convenience. The main limitation of this speci -
cation is that it precludes farmers from adjusting how much water they use per unit of land.
Appendix A.1.5 discusses a nested CES technology that generalizes that in (4).

2 Formally, we set [( 1)=1 , where ( ) denotes the gamma function.
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where AP = E[A?(! )] is the average labor productivity in country i's outside sec-
tor.?* Importantly, draws from this distribution are independent of the crop-speci ¢
productivity draws for the parcel the worker would otherwise till.

4.1.3 Market structure and trade costs

All markets are perfectly competitive. The outside good is freely traded and is
used as the numeraire. International trade in crops, on the other hand, is subject
to iceberg trade costs: In order to sell one unit of cropk to the representative

consumer in country j, farmers in country i must ship ,‘f units. The usual no-

arbitrage condition then requires that the undistorted price of crop k produced in

country i and sold in country j be equal to

Pl = P (8)

where p}§ denotes the local price of the domestic variety of crogk in country i before
any taxes or subsidies are levied.

In addition to trade costs, crops are subject to policy distortions. Each national
government sets a proportional tax i't‘ for each cropk at each datet.?? Accordingly,
the distorted farm gate price that farmers receive is Kpk, and the distorted price
paid by the consumer inj is [p = & Kpf. Agricultural policies are funded by
lump-sum taxes on the domestic consumer such that the government's budget is
always balanced.

The depth of the water table in aquifer g follows the law of motion

Dgt+1 = Dqt+ 4[(1 )Xqt  Rql 9)

where X ot is the total amount of groundwater extracted from aquifer g in period t,
Rq is the natural recharge of the aquifer (from rainfall, among other hydrological
mechanisms), is the constant rate of return ow, > and q Is an aquifer-specic
conversion factor between volume and depth that depends on the local soil type.

4.2 Competitive equilibrium

In a competitive equilibrium, all consumers maximize their utility, all laborers maxi-
mize their returns, either by cultivating the revenue-maximizing crop on their parcel
or by working in the outside sector, and all markets clear in each period.

21Some readers may nd it odd that workers have heterogeneous productivities in the outside
sector but not in the agricultural sector. Notice, however, that this model is observationally equiv-
alent to one in which it is the workers themselvesthat vary in farming productivity across parcels
within a eld. The key assumption is then that the labor productivity of a worker is uncorrelated
across tasks.

22|tk < 1, the policy is a net tax on that commodity; if £ > 1, it is a net subsidy.

ZWhen water is poured onto a crop, only a fraction of that water is actually absorbed by the
plant. The rest soaks back into the ground and, ultimately, back into the aquifer. The parameter

accounts for the latter fraction.
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4.2.1 Utility maximization

Given equations (1), (2), (3), and (8), utility maximization by the representative
household in each country requires that*

1 ko k kpk
K ik Pilt( i i jt Pt o
Cii = iP —1 P i foralli;j 21; k2K; (10)

. =) kK k k pk

2K i it n2l ni ni ntMnt
where " # .
k X Kk kok * '

F)it = ni ni nt pnt

n2l

denotes the CES price index associated with crofx in country i at time t.

4.2.2 Revenue maximization and labor choice

Each laborer chooses to either cultivate his parcel or work in the outside sector. In
the outside sector, pro t maximization requires that workers are paid their marginal
products whenever the outside good is produced. Throughout this paper, we assume
that labor endowments are large enough and expenditure shares on agricultural
goods are low enough for the outside good to be produced in all countries.

Should he choose to cultivate his parcel, the farmer must plant the crop that
maximizes his revenue. Thus, given equation (4), land allocation can be solved as
a simple discrete choice problem. To see how, rst note that we choose land units
such that L‘;k (') =1 for each ! . The farmer allocates his labor optimally between
drawing up water and tending the crop. One can show that his optimal output can
be written as A™ (1 )M ( ; D)), where M is decreasing in the water intensity

K and the current water table depth Dq(f)t.25 Thus, the farmer's revenue from
growing crop " is

()= iyPiyA” (M (D)

We assume that laborers know their outside labor productivity and their vectors
of crop-speci ¢ productivities before they select in which sector to work in each
period. It follows that a laborer assigned to parcel! in eld f cultivates crop k on
his parcel in periodt with probability

n (0]
PP )y = max fAT ()t )i (H)g

24See A.1.1 for derivation.

B gee the denition and derivation of M in A.1.2. An important point to note is that
limpx M ( X;D) = 0 for any crop, so a depleted water supply implies an inability to produce
crops.
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Since there is a continuum of parcels within each eld, {k also corresponds to the
share of parcels on which crog is cultivated in eld f in period t. Because TFP and
labor productivity in the outside sector are both independently distributed Fechet
with a common shape parameter according to equations (5) and (7), standard alge-
bra implies that for all f 2F andt 2 N,%°

'k k Afk M ( k. D )
fk iRt Daty)
t = f ; (11)
Alry Tt ot
where . X ‘ ‘ ) )
t = i)tPir A M Dgeyi)
‘2K

summarizes the pro tability of cultivating eld f at time t. Looking at the ex-
pression in (11), one sees that the higher a crop's farm-gate price,i'zf)tp!‘(f)t, or

mean productivity, A<, the higher the share of a given eld allocated to that crop.
The higher the crop-speci ¢ water requirements, K, however, the lower the share of
that eld allocated to crop k. The lower the labor productivity in water extraction
due to a low water table, D¢y, or the higher the mean labor productivity in the
outside sector,AiO(f), the lower the share of a given eld allocated toany crops, as
laborers are more likely to leave their parcels fallow to work in the outside sectof.
Finally, the bigger the shape parameter , the less heterogeneity there is across
parcels within a eld, so the more sensitive farmers are to cross-crop di erences in
prices or average productivity.

Let F; = ff :i(f) = ig denote the set of all elds in country i so that

X Z hf
Qk = Qi (1) d!

for; O

denotes the total output of crop k in country i. By equation (4) and the law of
iterated expectations, it must be that

X h i
Q= h' M ( 5Dgry)E AM(C) ri (1) =maxtA%, (1 )irf ') (g
f2F;

% g5ee A.1.3 for derivation.
2" The share of laborers assigned to parcels in eldf that choose to work in the outside sector at
date t is given by
Aio(f)
f
A?(f) ot

Note, too, that so long as any crops are grown on a given eld (which will happen so long as
Dq < 1), all crops with positive productivity, A™ > 0, will be grown on that eld.
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Given our distributional assumptions, one can also check that®

h | 1=
E ARQ) rff (1) =maxtA% (0 )irg ()i (g = AR :

Note that because of the endogenous selection of elds into crops, the average pro-
ductivity conditional on a crop being produced is strictly greater than the uncon-
ditional average. Combining the two previous expressions with equation (11), we
obtain the following expression for the supply of cropk in country i:

1

X _1
: K
Qit = hPA'M (% Dyry) (12)
f 2F;

foralli 2l andk 2 K.

4.2.3 Market clearing and feasibility

Since trade in crops is subject to iceberg trade costs, market clearing for all varieties
of all crops requires

X
k = KClt foralli2l andk2K: (13)
j2l

Let Fq= ff :g(f) = gg denote the set of all elds above aquiferg. Then total
groundwater extracted from aquifer g in period t is
X X
Xqt = hfxfk 1% (14)
f 2F q k2K

where x{k is optimal water extraction to grow crop k on eld f .

Finally, under the assumption that the outside good is produced in all countries,
the amount of labor demanded by the outside sector adjusts to guarantee labor
market clearing at a unit wage per e ciency unit of labor.

4.2.4 De nition and well-posedness of the competitive equilibrium

A competitive equilibrium in this environment is a feasible path, starting from an
initial vector of groundwater depths, along which consumers maximize their utility,
laborers maximize their returns, and all markets clear.

De nition 1.  Given a set of agricultural policies, f Kg, and an initial vector of
groundwater depths, f Dqg, a competitive equilibrium is a path of consumption,

fCk g, output, fQg, undistorted prices, f pf g, sharesf Tk g, groundwater depths,

Bgsee A.1.4 for derivation.
2See the de nition and derivation of x* in A.1.2.
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f D49, and groundwater extractions, f X 4tg, such that equations (9), (10), (11), (12),
(13), and (14) hold.*°

Conditions for the existence and uniqueness of an equilibrium are established
in Appendix A.2. A key feature of the equilibrium is that it can be decomposed
into a sequence of static sub-equilibria connected only through the law of motion
(9). This is not because laborers are assumed to be myopic ad hoc; instead, it
follows naturally from the fact that the groundwater in each aquifer is treated as a
common-pool resource, the stock of which is always large relative to the farms that
draw from it. 3> Accordingly, laborers do not consider how their choice of activity|
and the water that must be extracted to do said activity|will a ect the water table
depth below their parcel in the future. Instead of solving a dynamic program, then,
each laborer just solves a sequence of static problems. This is what makes estimation
feasible at the ne spatial scales we have in our data, which we turn to next?

5 Estimation

To simulate the model described in Section 4, we require estimates of a host of
parameters governing the demand, supply, and hydrology blocks of the model. We
cover each in turn. But, before doing so, we briey revisit our data and describe
the sample restrictions that we impose on the inputs to our estimation procedure.
We conclude by checking the model's t of targeted and untargeted moments.

5.1 Data and sample selection

We choose 2009 as the base year for our analysis because it is the midpoint of the
period covered by thegrace satellite data and the earliest year that postdates all
groundwater table depths reported in Fan et al. (2013). It is also the most recent
year for which data on agricultural output, land use, prices, and trade ows were
all available from the faostat program at the FAO.

To construct our sample, we select 52 countriesi(2 | ) that account for 94% of
total GDP, 97% of total agricultural production value, and 99% of total agricultural

%0There is nothing about the outside sector in this de nition because that sector acts like a residual
claimant on the resources of the economy once agricultural markets clear. See Appendix A.2.4 for
discussion.

%1That the representative consumers are assumed to be myopic is also crucial.

32Dynamic spatial models are notoriously hard to solve (Rossi-Hansberg, 2019). The framework
developed in Desmet, Nagy and Rossi-Hansberg (2018) has recently been put to great use tackling
environmental questions (see, e.g., Desmet, Kopp, Kulp, Nagy, Oppenheimer, Rossi-Hansherg and
Strauss, 2021; Cruz and Rossi-Hansberg, 2021). Like ours, that framework relies on assumptions
around agents' decision problems that ensure those problems are always static. In our case, the
assumption is on the market structure (or lack thereof) for water; in their case, the assumption is
on the returns to investment.
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laborers (see Figure 5a)° Within these countries, we model land use at the resolu-
tion of gaez grid cells, restricting our attention to arable land, which leaves us with
roughly 1.9 million elds. From the set of 38 crops for which gaez reports potential
yields at the eld level, we select 22 crops k 2 K) that account for 56% of total
agricultural production and 59% of total water use. Our set of crops, shown in Fig-
ure 5c, includes major staples such as wheat, rice, maize, soybeans, and potatoes, a
small number of water-intensive cash crops such as co ee and oil palm, and regional
crops critical in many drier low-income regions, such as cassava, sorghum, millet,
barley, and chickpeas. Importantly, the selected crops span a wide range of water
intensities, from about 3,000 nP=ha for yams to about 21,000 mi=ha for bananas.

We construct \aquifers" (g2 Q) as clusters of contiguousgrace pixels in the
following way. First, following Richey et al. (2015), we overlay a map of the 37 largest
global aquifer systems obtained from the Worldwide Hydrogeological Mapping and
Assessment Program (WHYMAP) and group grace pixels into clusters that are at
least partially contained within the borders of a single aquifer. Then, we overlay a
map of 180 NASA-delineated water basins and group theemaining grace pixels
into clusters according to the basin in which they lie. These basins are de ned
based on their hydrologic connectivity: within each basin, precipitation exits from
the same location, so we take this as a useful measure of the geographic extent
of the common pool resource externality. This procedure yields 278 clusters that
partition global land area. Finally, we discard all grace pixels that lie fully outside
the borders of our sample countries. The surviving 205 clusters map to what we
call \aquifers" in the model.

5.2 Demand

To estimate the demand block, we closely follow the procedure described in Costinot,
Donaldson and Smith (2016,8V.A). We proceed in three steps, moving outward from
the innermost nest of the demand system in (10). First, we use data on pricesp}ﬂ

and bilateral trade ows by crop, Ej‘f , to estimate the elasticity of substitution be-
tween di erent varieties of a given crop and to invert a composite of the crop-origin-

speci ¢ demand shifters, J'f and trade costs, j'§ 3% Second, we use the previous

estimates to construct price indiges at the crop IeveI,Pik, and combine them with

data on crop expenditures,Ef = 21 Ej'f , to estimate the elasticity of substitution
between crops and to invert the crop-speci ¢ demand shifters, i". Finally, we use

33Coverage shares are reported relative to totals for which data is available from faostat

34prices are measured in current US dollars per ton in 2009 from faostat . Where a US dollar
price was not reported, we converted from local currency units using the exchange rates provided
by the FAO. Where no price was reported, we followed Costinot, Donaldson and Smith (2016) in
imputing the price from the tted values of a regression of log prices on a country and crop xed
e ect before imposing our sample restrictions. Trade ows are measured in current US dollars
in 2009 from Comtrade via BACI. We compute autoconsumption, Ei‘i‘, as the di erence between
country i's total production and total exports of crop K.
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P
data on total crop expenditures, Ej = |« Eik, to invert the uppermost demand
shifters, ;. Throughout, we will make repeated use of the identity

1

1 k kpk
Ek = kpk ck= .o ik Pik o i P . 15
i = i Gi= P T 1 P kw1 (15)
2K i i n2l ni ni Pn

which de nes the value of exports of cropk from country j to country i.

Step 1. Estimating preferences across varieties of a given crop

With 52 countries and 22 crops, some crop-specic bilateral ows are zero. To
rationalize these observations, wheneveEX =0 we set ( ¥)' =0. Whenever

Ej'f > 0, on the other hand, we take logs and rearrange Equation (15) as
!

Ek
n S =mie@ )i (16)
|
where the rst term " #
mlk = In n| ni pl"l)l
n2l

will be captured by an importer-crop xed e ect, and the lastterm " In[ ( )' ]
is a structural error accounting for trade costs and unobserved variety-speci ¢ de-
mand shifters. Without loss of generality, we normalize the demand shifters such
that

" =0: (17)

j2l

By de nition, the equilibrium prices are correlated with the structural errors. We
instrument for prices using the log of the arithmetic average of thegaez potential

yield of crop k across all elds in country j,
1

X
zZk In@— ATKA -
j A
IF JJfZF

The instrument ij should be correlated with undistorted crop prices,p}‘, because
higher productivity leads farmers in j to supply more of cropk. We assume that it
is uncorrelated with the demand shifters and trade costs’®

From Equation (16), we estimate = 5.32 (with a standard error of 1.34 when
clustered at the crop-importer and crop-exporter levels). The composite parame-

J-'i‘( j'f )1 is then backed out from the prediction error of the regression while
imposing the normalization in Equation (17). This composite will be su cient to
construct equilibrialobserved and counterfactuallin what follows.

* Formally, the exclusion restriction is E[Z[" ] =
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Step 2: Estimating preferences across crops

The second step will look much like the rst, but instead of instrumenting for ob-
served prices, we will need to instrument for a price index that we construct our-

selves,
2 3.1

X 1
PA=4  K(ipHt 5
j2l
using the data and estimates from the previous step. With that index in hand, we
rearrange Equation (15) as

Ef

In 2= =mi+@  )n Pk + K (18)
|
where the rst term "X #
mi = In (P
2K

will be captured by an importer xed e ect, and the last term "X In X is a
structural error accounting for unobserved crop-speci ¢ demand shifters. Without

loss of generality, we again normalize the demand shifters such that

= 0: (19)
2K

The same endogeneity concerns from the rst step are present here, so we instrument
for the price index, Pi", with the corresponding arithmetic average of potential yields
for crop k, ZK.

From Equation (18), we estimate = 3.81 (with a standard error of 0.29 when
clustered at the importer level). As in the rst step, the demand shifter ¥ can
then be inverted from the prediction error of the regression while imposing the

normalization in Equation (19).

Step 3: Estimating preferences across sectors

The third step is the easiest: the utility function in (1) implies that ; = E; for all

i 21 . Across all three steps, our procedure for inverting the demand shifters has
allowed us to match exactly the observed expenditures by each country on crops
from each country in our sample in 2009.

5.3 Supply

To quantify the technologies in Equations (4){(7), we rst recall that the average
potential yield of each eld for each crop, A, is directly observable in the gaez
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data.®® Crucially, this is true for each eld f regardless of whether eldf is ac-
tually growing crop k. We calibrate the remaining parameters of the agricultural
production function (4) to estimates from the literature. First, we set 1 =0.25
to match the value-added share of land in agricultural production as computed in
Boppart et al. (2019). Second, to quantify the crop-speci ¢ water intensities, ¥, we
convert the estimates reported by Mekonnen and Hoekstra (2011) from cubic meters
per ton to cubic meters per hectare using data on average yields (tons per hectare)
from faostat .2’ Third, we set the elasticity of labor productivity with respect to
depth in the pumping technology (6) to =1 in order to accord with Burlig et al.
(2021), who specify a cost function for groundwater extraction that is linear in the
vertical distance over which the water must be lifted.

The remaining technological parameters that need to be estimated are the

extent of within- eld heterogeneity in potential yields, , each country's average
labor productivity in the outside sector, A° f Afg, and each aquifer's scale of
labor productivity in pumping groundwater, f  40. Again inspired by Costinot,

Donaldson and Smith (2016), our approach will be to choose values that allow us
to best t data on crop quantities and land use from faostat as well as water
extraction implied by observed cropped area fractions fromsage.

To that end, we de ne the predicted output of crop k in country i as a function
of the parameters (; A°%; ) in a base year,

X k !(Ako k;D
QU A% )= hAMM( KDyy)) pPA ML Bar)

f2F (A?) + o PATM( ;Dg))
where the dependence on is through the optimal input bundle, M. Likewise,

we de ne the predicted land allocated to agriculture in country i and the predicted
water extracted from aquifer g as functions of the same parameters in a base year,

X X kpkafk M ( k:D
ne g2 X X A0y
ek f2r, (AP + i BATM( i Dgr))
X X kpkafk M ( k:D
Xq(; A% )= hf xk F"lpl : ( : Q(f)‘)
k2K f2F (AP) + ok wPATM( Dy

% We use the baseline, high-input gaez estimates, measured in dry-weight tons per hectare and
converted to fresh-weight tons using the provided conversion table (in order to accord with fao-
stat production data). gaez reports separate estimates for rainfed and irrigated elds, so we use
observed shares of irrigated land from the Global Map of Irrigation Areas to compute a weighted
average estimate. For rice, gaez reports two varieties (dryland rice and wetland rice), but faostat
only reports the aggregate category, rice. In this case we use the maximum yield over the two
varieties for each eld.

3”Note that we hold ¥ xed across crops throughout the world because we are not aware of
any systematic estimates of how water-intensity for each crop di ers across regions. Engineering
estimates suggest that di erences in water-intensity across irrigation methods within crop are small
relative to di erences between crops.
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Note that all three functions encode an equilibrium for a given set of agricultural
policies, K. In the estimation, we set these to match the nominal rates of assistance
(NRAS) reported for 2009 by the World Bank dai project.®®

Conditional on , we will search for the vectorsA° and  at which, simulta-
neously, (i) the total amount of land allocated to crops predicted by the model for
each countryi, Li(; A°; ), exactly matches the total amount of land allocated to
crops perfaostat , [;, expressed in hectares, and (ii) the total amount of water
extraction predicted by the model for each aquiferg, Xq(; A°; ), exactly matches
the total amount of water extraction implied by observed cropped area fractions
from sage, Atk and the calibrated water intensity of each crop,

)qux X ht kafk.

k2K f 2F q

expressed in cubic meters. GiverA° and , we then search for the value of at
which output predicted by the model, QX(; A°; ), best matches observed output

of crop k in country i per faostat |, I‘ expressed in fresh-weight tons. Formally,
we use nonlinear least squares (NLS) to estimate (A°; ) as the solution of
X X h 2
min INQE(; A% ) InQf (20)
A i2l k2K
subject to
Li(; A% )=0Ci 8i2l; (21)
Xq(; A% )=X, 892Q: (22)

In the current draft, we consider only a restricted version of the NLS procedure
just described. For now we simply calibrate = 2:46 to match the analogous esti-
mate from Costinot, Donaldson and Smith (2016)3° We then search for the vectors
A° and that simultaneously minimize the mean squared deviations between the
model predictions and the data for land use and water extraction?®

% Nominal rates of assistance are reported in percentage terms, so ¥ = 1+ NRA K. NRAs are
not reported for every country-crop pair in 2009. Where no NRA was reported, we set X to
the \general" value that summarizes country i's assistance across agricultural products in 2009, if
available. Where no general value was reported, we set ¢ = 1.

39 Costinot, Donaldson and Smith (2016) use a bootstrap procedure, with replacement at the
country level, with 400 replications to estimate the 95 percent con dence interval around their
estimate, which they nd to be [2 :28;2:62]. ?, using Peruvian data on crop output disaggregated
at the district level, estimates = 2:06.

40 Although we can, in principle, exactly satisfy the constraints (21){(22), doing so requires ad-
justing the naive data targets [; and X\q to something attainable by the model with the current
menu of crops, as we describe more below.
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5.4 Hydrology

We close the quantitative model by specifying the remaining hydrologic parameters
that govern the law of motion (9). We assume a common return ow rate across
crops and aquifers, = 0:25, which is the central value reported by Dewandel et al.
(2008)** For each aquiferq, its initial depth, D qo, is set to the median value across
constituent grid cells as reported in Fan et al. (2013), expressed in centimeters from
the surface. To convert from a change in volume in aquifeg (coming in part from
extraction, Xqt) to a change in depth, Dgt+1  Dqt, we calibrate the parameter g,
which accounts for two characteristics of the aquifer. First, and most obviously, its
area, which can be computed easily from the underlyinggrace pixels and expressed
in squared meters. Second, itspeci ¢ yield, which is the volume of water that can
be drained from porous media by gravity, relative to the total porous media volume.
Speci ¢ yield depends on soil type, which itself depends on location and depti’
Accordingly, we use maps of soil type from Hengl et al. (2017) and estimates of
speci ¢ yield by soil type from Loheide et al. (2005) to calibrate q.

The nal component is the natural recharge rate for each aquiferqg, Rq, ex-
pressed in cubic meters. We calibrate recharge in order to match the average annual
change in total water volume for each aquifer implied bygrace trends from 2003
to 2016, given what the model implies about water extraction. This captures the
dominant source of recharge|rainfall|but also accounts for runo between aquifers
or any other unobserved variation in the global hydrological system.

5.5 Goodness of t

We compare the t of the model to the data along the most important dimensions
for the simulations that follow: cropped area, which we target at the country level,
and water extraction, which we target at the aquifer level. Figures 6a and 6b show
the percent di erence between the model simulation and the data for cropped area
and water extraction, respectively. For cropped area, the model reproduces the
global patterns almost exactly for the great majority of the world, with a simulation
error under 5% for 43 out of 52 countries that cover 71% of the total cropland.
Similarly for water extraction, the simulation error is under 5% for 145 of the 205
aquifers that cover 67% of the arable land represented in the model. Recall that we
are attempting to match all agricultural water use for 115 crops contained in the
Monfreda, Ramankutty and Foley (2008) data on cropped area and the Mekonnen
and Hoekstra (2011) estimates of water-intensity by crop, but there are only 22
crops in the model simulations, which are constrained by the availability of gaez
potential yields data, so we do not expect the model to be able to t perfectly
everywhere.

“11n future versions of the paper, we will account for heterogeneous return ow rates across crops.
“2For example, clay is among the least porous types of soil; gravel, among the most porous.
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The geographic pattern of the simulation errors shown in Figures 6a and 6b
makes apparent that the model's misses are heavily concentrated in southeast Asia,
where the simulations consistently underpredict both cropped area and agricultural
water extraction. There are several unique features of this region, which includes
Indonesia, Malaysia, the Philippines, Thailand, Vietham, and Bangladesh, including
extremely high rates of rainfall totaling several times the global average (Figure 1a)
and the widespread availability of both surface water and easily accessible water
tables close to the surface (Figure 1b).

Most notably, we emphasize that the aquifers in southeast Asian countries
contain extreme outliers in the data on the water intensity of land use by farmers, as
shown in Figure 6¢c. For most of the land in these regions, the water intensity in the
data we target suggests that the average acre of arable land uses over 10,008xma.
For context, recall that rice uses 8,790m=ha. Thus, matching the data would
require the model to simulate arable land use in which farmers choose to crop 100%
of acreage with a crop that uses more water than the most water-intensive staple
crop, which is clearly infeasible in the model. At the time of this draft, our best
understanding is that the extreme outliers in the land use targets for southeast Asia
occur because many farms in these regions crop the same acreage multiple times in
the same year. The data we use contains estimates dfarvested acreage, but while
the same acre can be harvested more than once in some locations in practice, it only
exists once in each year in the model. So it is possible that the model's targets are
actually impossible to meet in some locations within this region.

In future drafts of the paper, we plan to make adjustments for how the model
represents potential land use in regions with multiple cropping cycles in each year
by using global spatial datasets on crop calendars that identify these locations. For
now, we emphasize the map in Figure 6d, which shows that the model reproduces
the qualitative pattern of unusually extreme water-intensity of land use in these
countries in southeast Asia even if it does not fully capture the magnitudes of their
agricultural water consumption.

As an additional assessment of how well the model captures patterns of global
water resources, we also examine the calibrated values of the extraction productivity
parameters across aquifers. Recall from Equation (6) that the parameter governs
the labor productivity of water extraction for farmers, conditional on aquifer depth.
We allow this parameter to vary across aquifers because the costs of extraction,
conditional on the water table level, can vary across regions for a number of reasons.
These include the free availability of water through rainfall, the potential for surface
water irrigation that could be less expensive, heterogeneous irrigation technologies
available to farmers, and the local institutions that govern water access. While
not all the determinants of the input costs of water are well measured in the data,
we might expect the values to be correlated with plausibly relevant observable
covariates.

Figure 7 shows raw correlations of with other aquifer characteristics. En-
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couragingly, the top-left panel and top right-panel show that, over most of the range
of values represented in the data, both precipitation and the share of area equipped
for irrigation are positively correlated with . A few regions with more extreme
precipitation values have lower extraction productivities, consistent with the agro-
nomic literature that suggests a U-shaped relationship between moisture and crop
productivity. The bottom-left panel also shows that regions with greater nighttime
lights, a proxy for local income, have higher extraction productivities, consistent
with a role for technology. The bottom middle panel shows no relationship between

and our measure of local surface water presence, and the top middle panel shows
a U-shaped relationship between temperature and , which is again consistent with
relevant estimates in agronomy and agricultural economics.

The covariates shown in Figure 7 are correlated with each other in various
ways, so Table 1 also shows their partial correlations with the e ective input costs
of water. The rst column shows a regression in which the dependent variable
is the log of , which governs the extraction productivity for the farmer for a
given level of water table depth, and the second column shows results for the log
of the extraction productivity, A{(Dgqt), that also incorporates the actual water
table depth in the initial period. The patterns in the regression are very similar to
those of the raw correlations in Figure 7. The data clearly reveal familiar U-shaped
patterns in precipitation and temperature that imply an optimal level of rainfall
and temperature for water-intensive agriculture. The results also show a positive
role for area equipped with irrigation and nighttime lights in promoting extraction
productivity. The only puzzling result is the lack of relationship between extraction
productivities and the Pekel et al. (2016) data on surface water presence.

Perhaps most notably, the nal row of the table shows that extraction costs
vary strongly with groundwater table depth. Recall from Section 5.4 that we infer

to match the data on the water-intensity of land use. Recall also the patterns
shown in Figure 3 and Fact 5 of Section 3 that show that the most water-intensive
global land use is in regions with higher water tables and more rainfall. Thus, it is
the revealed preference of the world's farmers deciding how to allocate their land
from which we infer the extraction productivities. Overall, the parameter estimates
suggest a critical role for the natural environment in governing the input costs of
water, which are much higher in dry locations. These estimates are important for
the counterfactuals that follow both because they help explain the mechanism by
which scarcity can map into comparative advantage and specialization for unpriced
water inputs, and because they quantitatively determine how changes in the water
table over time map into productivity and welfare.
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6 Counterfactuals

6.1 Autarky

We start by addressing the overarching question of the general impacts of global
agricultural trade on water depletion and long-run welfare. To do so, we consider
what global agriculture and water resources would look like in the complete ab-
sence of international trade by running a counterfactual scenario in which we set
the iceberg trade costs, ,'J‘ , to in nity for all countries and crops. We run each coun-
terfactual forward for 30 years to show the dynamic evolution of water availability
and welfare with and without international trade.

Before examining the spatial distribution of agriculture and water resources
in a hypothetical world without agricultural trade, it is worth highlighting some
overall global patterns. Figure 8 compares how cropped area, water extraction,
aquifer depth, and welfare evolve in the baseline and in autarky over a 30-year
period starting in the initial year of 2003. The rst key result shown in panel (a)
is that global cropped area is nearly 90% higher in autarky than in the baseline.
This re ects the static e ciency gains from trade. When global agriculture can be
produced far from where it is consumed, the most e cient agricultural regions of
the world can disproportionately be used to feed the global population. In autarky,
however, each country must produce enough to meet domestic consumption, even if
doing so requires using less productive land. Thus, global rice and wheat yields are
15% and 4% lower on impact, respectively, in autarky than in the baseline.

Panel (b) of Figure 8 shows that the additional cropland required to meet global
demand in autarky also raises global water extraction by about 60% in the initial
period. We interpret this number as the aggregate water savings that allowing trade
creates by improving the spatial e ciency of production and reducing the land used
for global agriculture. Notably, the autarky increase in global water extraction is
nearly 30 percentage points smaller than the increase in global cropped area. This
is because the model simulations predict that some of the adjustment in response
to countries having to produce all their food domestically would come through the
margin of substituting to less water-intensive crops. Conditional on cropping, the
water intensity of land use is about 15% lower in autarky than in the baseline in the
initial period, as lower water-intensity crops grow as a share of the global distribution
of calories in the absence of the spatial e ciency gains from trade.

Panel (c) of Figure 8 shows the evolution of average global aquifer depth in the
baseline and in autarky. As discussed in Section 3, global arable land in the data
is evenly split between locations gaining and losing water. We match these existing
trends in water availability exactly in the model calibration, so the blue line in
Figure 8c shows that the baseline mean change in aquifer depth across global arable
land is essentially zero over time. In contrast, global average aquifer depth falls
by over 5 meters after 30 years of autarky, meaning water tables decline by about
27% of their initial average values that we take from the Fan, Li and Miguez-Macho
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(2013) data. Without trade, much more land and much more water is required to
meet global demand for food, which rapidly depletes the world's water resources.

Falling water tables in autarky have important implications for the evolution of
global agriculture and for welfare. Panel (d) shows that global welfare is stable over
time in the baseline counterfactual, as there is no average trend in water tables. In
autarky, however, welfare starts falling immediately upon impact, and is 2.2% lower
for the world after 30 years. The graph normalizes welfare across the counterfactuals
in the initial period in order to net out the static gains from trade, so the 2.2%
number measures only the dynamic welfare gains from trade that come through the
channel of preserving the world's water resources over time. This is a large e ect
in the context of previous estimates of static welfare gains in the trade literature
(Arkolakis, Costinot and Rodrguez-Clare, 2012), though we caution that the welfare
estimates in this draft of the paper remain preliminary.

Declining water tables a ect welfare through several channels in the model.
When water becomes more di cult to access, agricultural productivity falls, food
prices rise, and production in the outside sector declines as more land and labor
are allocated to producing enough food to meet demand, as shown in Figure 8a.
Global average yields of rice and wheat, which are already 15% and 4% lower in the
rst period of autarky due to the less e cient allocation of global land, fall by an
additional 8% and 3% after 30 years of water depletion. In addition, the composition
of consumption also shifts away from water-intensive crops. Panel (b) of Figure 8
shows that global water extraction falls substantially over time in autarky as water
tables fall and farmers respond accordingly to the rising cost of obtaining water.
The average water-intensity of cropped land starts 15% lower in autarky as farmers
in dry regions have to grow more food for domestic consumption, and falls further to
30% lower after 30 years as farmers substitute even more away from water-intensive
crops over time. Feeding the world's population in the absence of trade requires
substituting somewhat away from water-intensive consumption at rst, and even
moreso over time as water tables decline.

The spatial distribution of changes in autarky shows that the rise in cropped
area and water extraction has a long right tail that skews heavily towards dry
regions of the world. While extraction rises by 60% upon impact for the world
overall, Figure 9a shows that it increases by as much as 300-600% in a number of
regions, including most of Africa and Australia. As the map implies, the regions in
which cropped area and water extraction increase most tend to be drier than the
global average. Figure 9b shows that the increase in water extraction is over 150%
for regions in the bottom quartile of initial water table depth, and nearly 200% for
regions in the bottom quartile of rainfall, compared to 60% for the world on average.
In contrast, extraction increases by only about 20-25% in regions in the top quartile
of initial depth or rainfall. Some extremely wet food-exporting regions in Southeast
Asia with very water-intensive production in the baseline even see declines in their
water consumption in autarky. The dominant pattern in the baseline equilibrium,
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as re ected in Fact 5 from Section 3, is that wetter regions in the world export
water-intensive goods to drier regions, so the scenario where all food is produced
domestically forces water consumption to rise most in the predominantly importing
regions that can least support it.

Figure 10 shows changes in water table depth across the world in the baseline
and in autarky. Recall from Section 5 that the change in depth is a function of not
only water extraction and recharge (which is xed in each aquifer across years and
counterfactuals), but also of the speci c yield, , in each aquifer, which maps changes
in volume to changes in depth based on local soil characteristics. In the baseline,
the arable regions of the world that are depleting most rapidly, such as northwestern
India and California's Central Valley, project to have their water tables decline by
about one to three meters over the 30 year horizon. In autarky, theaverageglobal
decline is about ve meters. For the driest regions at the 90th percentile of water
table depth, the 30-year decline is an enormous 18 meters of depth. Overall, about
16% of the world's arable land sees their water tables fall by over 10 meters within
thirty years in autarky, a rate of water depletion that far exceeds anything observed
in the existing data.

Figure 11 shows the evolution of groundwater table depth and welfare over
time in two selected example countries, Australia and India. Australia is a major
food-importing region in the baseline, preserving its domestic water resources by
largely relying on other countries for their water-intensive consumption. On aver-
age, its aquifers are not depleting in the baseline, as shown in the blue line of panel
(a). In autarky, however, the red line shows that Australia's water tables decline
substantially. Panel (b) shows that welfare falls correspondingly over time in au-
tarky, whereas it holds steady in the baseline. The decline in welfare in Australia
is smaller than in some other countries because the agricultural share of GDP is
smaller, though note that the welfare calculations in the paper remain preliminary.

Panel (c) of Figure 11 shows that aquifer depth in the northwestern region of
India is depleting substantially in the baseline simulation, but is stable in autarky.
Patterns elsewhere in India are qualitatively similar, such that panel (d) shows
that welfare declines notably in India in the baseline, and declines somewhat less
over time in autarky. This is consistent with the evidence in Sekhri (2022) that
agricultural trade exacerbates depletion in India - a major food exporter. Note as
a caveat to this result that India is one of the small proportion of regions in the
world for which we do not closely match baseline water consumption (see Figure
6). However, since we underpredict water consumption in India in the simulation
relative to the data, we expect that improving the t of the model would only
strengthen this pattern of agricultural trade exacerbating, rather than preventing,
depletion.

While it is di cult to see visually, the maps in Figures 9a and 10b also show
that the Central Valley of California constitutes a sharp exception to the broad
global pattern of trade preventing water depletion. Much like northern India, this
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region of California with export-oriented agriculture and rapid depletion in the base-
line has lower water extraction and a stable trend in its water table in autarky. We
take these counterexamples to the global patterns as an encouraging sign that the
model's calibration and simulation does not force a result in which trade liberal-
ization prevents water depletion. In fact, the results show that the two prominent
examples in the literature of possible trade-induced local water depletion appear to
be consistent with a dynamic general equilibrium analysis. However, the results also
show that California and India stand in sharp contrast to the overall picture across
the world, in which agricultural trade overwhelmingly serves to prevent rather than
create problems associated with water depletion.

6.2 Uruguay Round Agricultural Trade Policy Reforms

We now turn from analyzing the general impacts of global trade on water resource
depletion and welfare to considering speci c realized and potential policy reforms.
We start by considering the set of trade agreements arising from the Uruguay Round
of World Trade Organization negotiations that concluded in 1994. These agreements
were signed by 123 nations, and together marked the most substantial liberalization
of global agricultural markets observed in history. Prior to the Uruguay Round,
agriculture was largely omitted from the General Agreement on Tari s and Trade
(GATT) and national governments were heavily leveraging subsidies, import re-
strictions, and foreign exchange market manipulations, among other tools, to dis-
tort agricultural production and trade (Healy et al., 1998). The agreements these
countries signed in 1994 induced a sweeping array of reforms that reduced global
agricultural market distortions in most countries.

To investigate the implications of this observed market liberalization on wa-
ter depletion and welfare, we run a counterfactual simulation in which we x all
country-by-crop Nominal Rates of Assistance (NRAs; i" from Section 4) to equal
their average values during the period from 1986-1994, the negotiating years of the
Uruguay Round. Comparing this counterfactual to the baseline in which we use
NRA values observed in 2009 allows us to contrast the long-run e ects of the policy
regimes that existed before and after the reforms were made. In addition, because
many production and trade distortions remain in e ect today, we also conduct a
simulation in which we set all NRA values to zero. This allows us to evaluate the
e ects of removing all remaining policy distortions in global agricultural markets.

Figures 12a and 12b show that these two alternative scenarios lead to very dis-
tinct spatial distributions of reforms. Before the Uruguay Round, wealthy nations
were heavily subsidizing agricultural production, while developing economies re-
lied on import-substitution policies intended to promote industrialization, including
agricultural export taxes and foreign exchange manipulations that suppressed agri-
cultural production (Anderson et al., 2013). Therefore, the Uruguay Round reforms
caused NRAs to decline in regions like the United States, Europe, and Australia,
but increased NRAs in many lower and middle-income regions, including India,
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Brazil, and many parts of Africa (Figure 12a). In contrast, remaining distortions in
agricultural policy consist almost entirely of net subsidies, such that removing these
interventions would reduce production incentives nearly everywhere (Figure 12Db).

The maps in Figure 12c and 12d show the simulated change in global water
extraction by region resulting from the Uruguay Round reforms and the hypothet-
ical elimination of remaining agricultural net subsidies, respectively. As expected
from the pattern of agricultural policy changes, the Uruguay Round reforms reduced
global water use in richer, largely wetter, regions such as western Europe and the
U.S. that reduced their domestic supports to agriculture. In contrast, many devel-
oping countries increased extraction substantially as their reforms largely removed
disincentives to agricultural production. On net, the simulations suggest that the
Uruguay round of reforms actually increased global water extraction by about 5%.
In largely water-scarce lower-income regions especially, the policy changes raised
consumption relative to recharge, increasing the rate of depletion and causing de-
clines in welfare over time. In contrast, Figure 12d shows that hypothetical further
policy liberalizations that remove remaining agricultural distortions would reduce
global extraction in most regions, by about 5% in total, helping preserve the world's
water resources and mitigate any dynamic declines in welfare.

Together, these ndings underscore the complex and nuanced relationship be-
tween agricultural trade, rates of water depletion, and welfare. While the autarky
counterfactuals overwhelmingly point to substantial economic and environmental
gains from trade along both static and dynamic resource conservation dimensions,
we nd that the most historic agricultural market liberalization to date appears to
have exacerbated global water stress and reduced welfare over time. In contrast,
further liberalizations that eliminate remaining distortions would broadly have the
opposite e ect. These results, taken together with the spatial patterns showing that
autarky preserves water resources in a small number of rapidly depleting regions,
such as California and northern India, make clear that trade in agricultural goods
need not be globally bene cial for water or welfare. In a setting with ubiquitous
input market failures, it is critical to assess the speci ¢ spatial arrangement of any
alternative output policy regimes in order to determine their likely impacts on water
resources and welfare.

7 Conclusion

This paper considers the impact of global agricultural trade policy on regional water
scarcity and long-run welfare. In a setting in which input markets are notoriously
distorted and largely do not exist, it is possible for trade to exacerbate the local
common pool resource externality and cause dynamic losses from depletion over
time if poor institutions act as a source of false comparative advantage (Chichilnisky,
1994).

However, we show that in the case of water, the relative physical scarcity of

40



the resource across locations maps strongly into its e ective input price, such that
water-abundant regions do have strong comparative advantage in water-intensive
production despite the widespread lack of functioning markets for the input. Thus,
global agricultural trade allows specialization in water-intensive production to clus-
ter in water-abundant regions, preventing severe global depletion of water resources
in the vast majority of the world, and especially so in dry locations that presently
rely heavily on food imports. The model allows us to introduce and quantify a pre-
viously unmeasured channel of the dynamic resource availability gains from trade
in this context. Despite these broad bene cial e ects of global trade for water re-
sources, we also show that trade and agricultural policy liberalizations can have the
harmful e ect of exacerbating depletion in some locations and in the case of some
observed and hypothetical policy reforms, suggesting that the relationship between
trade policy and water resources is huanced and case-speci C.

A natural question is whether the ndings about trade preventing depletion
of water resources can be generalized to the cases of other open access natural
resources. Given the mechanism for the primary results in this paper, we conjecture
that a key factor determining the relationship between trade and resource depletion
is whether there exists a physical mechanism for the resource's scarcity to map into
its marginal cost of extraction. If so, it may be the case that nature can, at least
partially, compensate for nonfunctional input markets in governing the allocation.

If not, it may not be that trade is helpful at all - and indeed could be harmful - for
preserving the long-run availability of the resource. Thus, we might expect to see
very di erent results for the e ects of global trade on the management of forests,
for which the marginal cost of extraction is generally independent of the existing
stock of forests, and the management of sheries, for which the marginal cost of
extraction depends strongly on the existing local stock of sh.

We conclude with a nal suggestion for future research. One policy implication
of the results in this paper is that international trade in agriculture creates con-
siderable bene ts through its allocation and preservation of water resources. Yet
policymakers often oppose reforms that reduce barriers to importing food because
of a belief that domestic production is necessary to enhance \food security." In this
paper, we show an important dimension through which agricultural trade actually
enhances this de nition of food security. In the absence of imports from water-
abundant regions, many countries in water-scarce locations would draw down their
water resources substantially enough that domestic agricultural production would
become much more di cult in the long-run, eventually increasing their reliance on
external producers. In the context of these ndings, and of the broader recent de-
velopments in the literature on trade, agriculture, and the environment, it may be
worth considering more closely the relationship between trade policy and reliable
long-run access to food.
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